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Abstract-A mathematical model has been formulated for the evaporation and growth of a two-phase 
isolated droplet of two partially miscible components, exposed to a stagnant gas phase. Unsteady-state 
transport equations of the two components in the core, shell and gas phases have been rigorously treated. 
The resulting mathematical model involving two moving boundaries at the core-shell interface and the 
droplet-gas interface has been solved numerically for various conditions. Effects of critical parameters on 
the droplet dynamics have been examined. In a vapor free atmosphere where both components evaporate, 
the results show that the core either grows or evaporates depending on the physical parameters. When the 
core evaporates, either the shell or core disappears first, leaving a single-phase droplet. The study shows 
that the volatility of the components, thermodynamic and transport parameters greatly influence the 

evaporation behavior of a layered droplet. 

1. INTRODUCTION 

THE GROWTH or evaporation of muIticomponent, multi- 

phase droplets is a process of interest in the study of 

cloud formation, spray drying, droplet combustion 
and coating of agricultural spray. Although evap- 
oration and growth of single phase droplets con- 
taining one or more components have been examined 

in numerous studies [l-6], only a few studies have 
been devoted to droplets containing immiscible or 
partially miscible components. Law et al. [7] have 
analyzed the combustion characteristics of water-in- 
oil emulsion droplets and indicated that the presence 
of water improves the combustion efficiency of hydro- 
carbon fuels. Avedisian and Fatehi [8] have also exam- 
ined the evaporation characteristics of emulsified 

liquid droplets. For water-heptane emulsion droplets, 
they found that the slightly less volatile component, 
water, preferentially evaporated from the droplets. 
The coalescence of internal microdroplets in an 
unstable emulsified droplet results in the formation of 
either a core or a shell, thus leading to the creation 
of a layered droplet. Condensation of an immiscible 
phase on a homogeneous droplet can also produce a 
layered droplet. It has been demonstrated that com- 
pressed monolayers of insoluble surfactants forming 
rigid surface films provide high interfacial resistance 
to mass transfer [9-121. The reduction in the transfer 

rate through such a surface film cannot be explained 
by the Fickian diffusion model [ 131. It has also been 
observed that soluble or expanded surfactant films 

offer little or no interfacial resistance to mass transfer 
[14-161. These studies indicate that the formation of 
rigid, immobile, somewhat ordered interfaces provide 
surface barriers to mass transfer, whereas expanded, 
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liquid like mobile surface layers offer little or no bar- 

rier to mass transfer. 
Despite its importance in many physical and indus- 

trial processes, the problem of evaporation and 
growth of layered droplets has not been examined 
theoretically up to this time. In the present study, we 
shall rigorously examine the dynamic behavior of a 

two-phase binary droplet, of partially miscible com- 
ponents, exposed to a stagnant gas phase. The par- 

tially miscible components form two distinct phases 
consisting of the core and shell of the droplet. The 
study is unique in the sense that it considers the move- 
ment of two phase boundaries at the core-shell inter- 
face and the droplet-gas interface, along with the 

concentration distributions in the core, shell and gas 
phases. A somewhat analogous problem involving 
bubble growth inside a droplet suspended in an immis- 

cible liquid has been analyzed by Avedisian and 
Suresh [17]. In such a problem, the conservation of 
mass dictates a fixed relationship between the bubble 
radius and the outer radius of the droplet at all times. 
In the present problem no such relationship exists be- 
tween the core and outer radii, and their changes are 
dictated by interfacial transfer rates. The model also 

considers core and shell phase convections generated 
by the density difference between the two components. 
Readey and Cooper [18] were the first to consider 
such convection in their analysis of dissolution or 
growth of a crystal from a non-zero initial size. Solu- 

tions of the model are accomplished by numerical 

methods, and are critically examined to determine the 
factors that affect evaporation and growth kinetics. 

2. MODEL FORMULATION 

A schematic view of the physical situation involved 
in the problem is shown in Fig. 1. A stationary coated 
droplet composed of two components A and B that 
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NOMENCLATURE 

u droplet radius % dimensionless position defined by 
ir’ I y;_xj, activity of component ,j (= A, B) in equation (34). 

phase i (= ‘. “) 
A dimensionless droplet radius 

4 van Laar constant 
Greek symbols 

h j5,JPA, ratio of pure component liquid 
P PJP,, relative volatility parameter 

phase densities 
7: activity coefficient of component 

4 van Laar constant 
,j (= A, B) in the droplet phase 

c, gas phase concentration of component 
j ( I.= ‘, “) 

t‘ 
.i (= A, B) 

C,,/& volatility parameter 

D, gas phase diffusion coefficient of 
P MA/M,, ratio of molecular weights 

component j (= A, B) 
P’ total mass density of the droplet phase 

i ( zz ‘, ‘1) 
Q. diffusion coefficient in the droplet phase 

i ( = ‘, “) 
P; mass concentration of component 

2 i 0,/D;, dimensionless gas phase diffusion 
j (= A, B) in the droplet phase 

coefficient of componenti (= A, B) 
i ( zz ‘) “) 

9, D;/D;, dimensionless liquid phase 
Pi liquid phase density of pure component 

diffusion coefficient 
j(=A, B) 

0 
,f”(t) arbitrary function of integration 

effective infinity factor 

4 total mass of component j (= A, B) in 
the droplet 

i, 

D ;_ t/u,‘. dimensionless time 
dimensionless concentration of 
component j (= A, B). 

4 molecular weight of component j (= A, B) 

p; vapor pressure of component j (= A, B) 
I radial position Subscripts 

R universal gas constant A component A 

~7, C, ,,/C,,, saturation ratio of component B component B 

j (= A, B) in bulk gas C core droplet 

t time c! value at saturated state 

T temperature i initial value 

Pi convective velocity in the droplet phase .i component A or B 

j ( = ‘, “) L liquid phase 

V droplet volume m value at the miscibility limit composition 

tc; weight fraction of component j (= A, B) Xi = xi, 

in the droplet phase i (= ', ") 
S value at the droplet surface 

x; mole fraction of component .j (= A, B) ;o bulk gas. 

in the droplet phase i (= ‘, “) 
x dimensionless position defined by Superscripts 

equation (32) i core phase for i = “, and shell phase i = ’ 

Y dimensionless position defined by _ pure component 

equation (33) core phase. 

are partially miscible is exposed to a stagnant gas 

phase containing A, B and a non-transferring species 
C. The partially miscible components form two dis- 
tinct phases consisting of the core and shell of the 
droplet. Initially, the two phases (shell and core) are 
in equilibrium with one another, and their com- 
positions are given by the miscibility limits. The drop- 
let either evaporates or grows depending on the bulk 
gas phase composition. In the mathematical for- 
mulation of the problem we shall invoke the following 
assumptions. 

(i) The droplet evaporates or grows relatively 
slowly, thus the system remains nearly isothermal. 

(ii) The core droplet remains at the geometric 

center of the system at all times, and the outer phase 
exists in the form of a concentric shell surrounding 
the core droplet. Ray et al. [19] have experimentally 
observed that core and shell phases form concentric 
spheres in layered droplets except for tiny cores. In 
latter situations, the location of a tiny core droplet 
inside a large immiscible droplet has no effect on the 
mass transfer rate. 

(iii) The densities of the two phases in the droplet 
change with composition. No volume change, 
however, occurs due to the mixing of the two com- 
ponents (ideal mixing). This assumption implies that 
the excess molar volume is negligible compared to the 
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FIG. 1. A schematic description of the problem. 

molar volumes of the individual components and this 
condition is satisfied if the mixing of the components 
does not result in the evolution or absorption of any 
significant amount of heat. 

(iv) The saturation concentrations of A and B in 
the gas phase are negligibly small compared with the 
concentration of the non-transferring species. The 
density of the gas phase remains constant at all times, 
and the gas phase convection (Stefan flow) is 
neglected. The analyses of Rosner and Chang [20] 
and Huckaby and Ray [6] show that the gas phase 
convection can be neglected if (pJp,) d 0.10, where 
pv and pp are the saturated vapor mass concentration 
and gas phase density, respectively. 

(v) The gas-liquid and liquid-liquid interfaces of 
the system remain at equilibrium at all times. This 
assumption implies that there is no interfacial resist- 
ance to mass transfer. 

(vi) The diffusion coefficients of A and B in the gas 
and liquid phases are independent of compositions. 

With the above assumptions, the following partial 
differential equations govern the transfer of species A 
and B. 

Core and shell phases 

Species balance on A 

Continuity equation 

ap’ -= _- 
at r; ; (r2p’u’) 

where superscript i = ’ or )) denotes the shell or the 
core phase, respectively. 

Gas phase 

Species balance 

ac 5’“( ) 
at - 7 ar 

r2D L 
J Jr (3) 

where subscript j = A or B stands for component A 
or B. 

The following boundary and initial conditions 
apply to the above system of partial differential 
equations. 

Atr=O 

At the core-shell interface (r = a,) 

Equilibrium conditions 

I I I, I, 
YjmXjm = YjmXpn 

Species balance on A 

(5) 

da, aw; 
= p; dl +p”D’I dr -p;u” (6) 

At the gas-droplet interface (r = a) 

Equilibrium conditions 

c = ~;x;p;M, 
/ RT 

Species balance 

Dj2 +Cj$ = p; g fp’D; !?$ _p;v’ (8) 

Bulk gas phase (r-t co) 

c, = c,, (9) 

Initial conditions (t = 0) 

Core phase (0 f r < a,) 

w; = w;, (10) 

Shell phase (ac < r < a) 

w; = WArn (11) 

Gas phase (a c r < 00) 

c, = c,,. (12) 

To solve equations (1) and (2), describing the con- 
centration profiles in the core and shell phases, we 
need to develop a relation between the velocity and 
composition. Since pi and pa are functions of w; 
only, we may rewrite equations (1) and (2) in the 
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following forms 

and 

(13) 

(14) 

The following relations apply between the mass den- 
sity pi, mass concentration of A pi, and weight frac- 
tion wi, 

(15) 

and 

(16) 

Eliminating the time derivatives from equations (13) 
and (14), and using equation (16), we obtain the fol- 
lowing relation between the velocity and composition 
distributions : 

To solve for the velocity profiles, we need a relation 
between the total mass density and weight fraction. 
In the present study, we invoke assumption (iii) (i.e. 
volume does not change due to mixing) which yields 
the following relation between the mass density and 
weight fraction 

PR - 
@ = 1 -(I -b)wi (IV 

where b = Pe/pA, and PA and ps are the pure com- 
ponent liquid phase mass densities of A and B, respec- 
tively. Integrating equation (17) with the use of equa- 
tion (18), we obtain 

&,j = __g %’ g +f”(j) (19) 

where f’(t) is an arbitrary function of integration. 
Since the density and velocity must have finite values 
at the center of the droplet (I = 0), the function of 
integration y(t), must be equal to zero for the core 
phase. The velocity in the core phase is, therefore, 
related to the mass density as follows : 

The expression for the function of integration f’(t) 
for the shell phase, however, is not as obvious as in 
the previous case. Since the liquid phase volume does 
not change due to mixing, the rate of change of the 
droplet volume F’, can be expressed as follows : 

d C’ da 1 dm,\ I dni,, 

dt 
;_ 4x& z.z 

dt f?<, dt .+ PK dt 
(21) 

Using Leibnitz‘s theorem. the rate of change of total 
mass of A m,,, in the droplet can be written as 

Replacing the time derivatives in the integrands of 
equation (22) with the right-hand side of equation 
(I), integrating the resulting expression, and using 
equations (4) and (6) we obtain 

du 
+4na2p6, dr 

(23) 

which, when combined with equations (18) and (19), 
yields 

(24) 

Similarly, we obtain 

dm -.- = 
dt 

- it% &f’(j) --b?Jp’o’,,=,) +4xa2p;, ;. 

(25) 

Substituting equations (24) and (25) in equation (21) 
and using the relation in equation (18) we obtain 

S’(t) = 0. W) 

The velocity distribution in the shell phase is thus also 
given by 

2” n - 

D; apt 
--- 

p’ Zr (27) 

Equations (20) and (27) can now be substituted in 
equation (2), to obtain the following partial differ- 
ential equation describing the mass concentration dis- 
tributions in the core and shell phases 

(28) 

The complete mathematical description of the prob- 
lem is now given by the partial differential equations, 
equations (3) and (28) along with the boundary and 
initial conditions defined by equations (4) to (12). 
The following ordinary differential equation obtained 
from equation (6), using equations (18) (20) and (27) 
provides the core radius as a function of time, 
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da,_ 
D’ dp’_D” ap” 

t 1 L ar L ar 
clt-- ~ P’-P” ‘=“< 

(29) 

with a,(O) = aci. 
The boundary conditions defined by equation (8) 

are not useful in their present forms. They may, how- 
ever, be rearranged, using equations (18) and (27), to 
yield the following boundary condition at the droplet- 
gas interface (r = a) : 

(30) 

and the ordinary differential equation describing the 

outer radius as a function of time 

(31) 

ciably affected by diffusion at a distance (cr+ l)a(t) 

from the droplet center. Transformations given by 
equations (32) to (34) immobilize the moving bound- 

aries, and scale the spatial domains of all three phases 
between 0 and 1. The transformation shown in equa- 
tion (33) was first used by Duda et al. [21] for single 
moving boundary problems, and subsequently, gener- 
alized by Saitoh [22]. Avedisian and Suresh [17] 
applied this transformation to the problem of bubble 
growth involving two moving boundaries. 

The dependent variables are non-dimensionalized 

by the following transformations : 

$, = c,-CF. 
c,i - c,, 

A, = a,(t) 
ai 

(36) 

with a(O) = a,. In deriving the above equations, the 
a, 

ratio of the gas phase mass density to the liquid phase 
where 

mass density has been neglected. p;Y;&ln~, 

The present problem has two moving boundaries. 
c,i = RT (39) 

The model as formulated thus consists of four partial 
differential equations and two ordinary differential 

is the gas phase concentrations at the surface of the 

equations that must be solved simultaneously. Bound- 
droplet at t = O+. 

ary conditions given by equations (7) and (30) are 
With the above dimensionless variables, the equa- 

non-linear. The problem is thus analytically intract- 
tions of the model reduce to the following forms : 

able in the present form. In the present study, we 
will develop a numerical solution of the system of Core phase 

equations and perform a parametric study to elucidate 
the effects of various parameters. aw; I 

p=p 9 
az 4 [ 

a*w; aw: 2 
L~+~ ,+%~A~ 

( 
3. MODEL IN DIMENSIONLESS FORM 2(1-b) aw; 

The model as described above is not in a suitable +~r]l-(l--h)w~] ax I (40) 

form to be solved by any standard numerical tech- 
nique. The system involves three spatial domains, the with the following initial and boundary conditions : 

core, shell and gas phases, which are separated by 

moving boundaries at the core-shell interface 
w;(x,o) = w;, (41) 

r = a,($, and the droplet-gas interface r = a(t). The atX=O 

outer boundary of the gas phase is at an infinite dis- 
tance from the droplet, making the gas phase an ill 

awl 
p=O 
ax (42) 

defined domain for a numerical solution. To cir- 

cumvent these problems, we introduce the following atX= 1 

dimensionless indeoendent variables : w; = w;,. (43) 

X = r, 
a,(t) 

for0 d r < a,(t), (32) 
Shell phase 

Y= 
a(t) - r 

a(t) -a,(t) ’ 
forn,(t) < r < a(t), 

fora(t)<r<co, 

D;~t 
r=2 

ai 

(33) 

(34) 

(35) 

a,; 
---= 
az 

2 

(1-Y)(A-&)+A, - 

where c is a number chosen such that the con- 
centration distributions in the gas phase are not appre- 

2(1-b) aw; 2 
+ [l-(l-b)w;] ay (01 (4) 
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with the following initial and boundary conditions : 

&( Y, 0) = w;, (45) 

atY=O 

1 aw; a[1 -(l -b)wk] 

(A-A,) dY - aA 

D*B& 

P ( 

atiB 
X Gil -&3) z 

-~‘,(l-Wk)(B;,-S*)~ (46) 

at Y= 1 

Gas phase 

+ (I+aZIA dA 
dr 11 

(48) 
CT 

with the following initial and boundary conditions : 

$,K 0) = 0 (49) 

atZ=O 

ri’ --s 
*, =* 

i 
(50) 

atZ= 1 

*, = 0. (51) 

Droplet-gas interface 

dA r. _ = ._.~ 
dz aA 

with the initial condition 

A(0) = 1. (53) 

Core-shell inteyface 

dA, 1 [l -(I -b)wl] (?I%$ 
-= 
dt w; - ~“4 ( (A-AA,)[l-(l-b)&] aY 

+ DL[l-(1-b)w;]aw; 

> A,[I -(I -b)wy ax x. y=, (54) 

A,(O) = A,, = 2. (55) 

The parameters in equations (44) to (55) arc dctined 
as follows : 

It should be noted that the three domains are scaled 

between 0 and 1, and thus, the problem has been 

essentially reduced to a single spatial domain (0 < X. 
Y, Z < 1). The moving boundaries at the core--shell 
interface and droplet-gas interface are immobilized in 
such a way that the ODE, equation (52), describing 

the outer radius as a function of time is coupled with 
the PDEs at Y = Z = 0, while the ODE, equation 
(54) describing the core radius is coupled at 
X = Y = I. Moreover, the PDEs, equations (40), (44) 
and (48), are coupled by the equilibrium condition, 

equations (43) and (47), at X = Y = I, and by the 
boundary condition, equation (46), at Y = Z = 0. 
The resulting system of equations to be solved thus 

reduces to four PDEs defined in the identical spatial 
domain between 0 and 1, coupled to two ODES at 
X = 0 and X = I, respectively. The spatial variables 

X, Y and Z given above are labeled identically in the 
computer program, though the distinction is main- 

tained here for clarity. 

4. SOLUTION BY NUMERICAL METHODS 

The system of differential equations described 
above is solved by using a numerical software package 
called SPRINT (Software for Problems in Time). 
Berzins et al. [23,24] introduced SPRINT for numeri- 

cal solutions of coupled systems of time-dependent 
algebraic, ordinary, and partial differential equations. 
SPRINT uses the Method of Lines (MOL) for solving 
a system of partial differential equations (PDEs). The 
space derivatives are discretized over a number of 
user specified space points NPTS, using either finite 
difference, finite element or collocation methods 

resulting in a system of NPTS non-linear, coupled 
ordinary differential equations (ODES) for each given 
PDE. A versatile set of time integrators, based on 
Gear, theta, variable theta and switching, and blended 

linear and multi-step methods, are available for solu- 
tions of initial value ODES. The errors associated with 
the time integration procedure is controllable to a 
user specified value for the relative error RTOL, and 
absolute error ATOL, tolerances. SPRINT in its pre- 
sent form can handle a system having a maximum 
number of 1000 initial value ODES. Due to this limit- 
ation, the number of mesh points NPTS, is restricted 
by the number of PDEs to be solved. 

In the present study SPRITE interface of SPRINT, 
a finite difference method, is used to solve the system 
of equations described above. SPRITE is a simplified 
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interface of SPRINT which provides a calling 
sequence of SPRINT. The discretization method is 
based on a lumped finite element method in which a 
three-point finite difference formula is modified to 
provide a second-order accuracy. The errors associ- 
ated with the spatial discretization depend on the 
number and location of the break-points that define 
the subintervals. For the present problem, the con- 
centration distributions are expected to have relatively 
steep gradients near the droplet-gas interface (i.e. near 
X = 0) and near the core-shell interface (i.e. near 
X = I). Therefore, small subintervals near X = 0 and 
X = 1 and larger subintervals in between were used 
in the present study. For time integration Clear 
method was chosen, Using a trial and error proced- 
ure NPTS = 248, the maximum number of break- 
points ailo~~able by SPRINT, RTOL = 1O.-.3 and 
ATOL = 1 O- ’ were selected. 

Since the composition in the shell phase at t = 0, is 
given by the equilibrium relation at the core-shell 
interface and has a non-zero value, the initial con- 
ditions given by equation (49) are inconsistent with 
the boundary conditions given by equation (50) at 
t = 0. The software package is well suited for the 
present system because of its ability to handle incon- 
sistent initial and boundary conditions. The software 
uses a small time step as long as the inconsistencies 
exist at the boundary. 

The value of the parameter 0 defining infinity in the 
gas phase was obtained by a trial and procedure such 
that the concentration profiles did not alter with 
higher values. A value of CF = 100 satisfied the 
criterion. The accuracy of the numerical method was 
tested by comparing the results of the present model 
with the results for a pseudo-steady state model. In 
the pseudo-steady state model the time derivatives of 
the partial differential equations of the present tran- 
sient model were equated to zero. The resulting ordi- 
nary differential equations were solved analytically, 
and the results agreed with that of the present model 
as long as .Q < 16 ‘. Values of ~$3 > IO- 7, imply that 
the components of the system are relatively volatile, 
and the core and outer radii change relatively fast. 
The system is not thus expected to behave in the 
manner of a pseudo-steady state system. 

5. PHYSICAL PARAMETERS 

The solution of the model as formulated depends 
on twelve independent dimensionless parameters : A,, 
b, BA, S&, &, sA, sB. x;,,,, x2,,,, & E and p. Moreover 
two relations are needed for the activity coefficients of 
A and B as functions of compositions. In the present 
study, we shall use the van Laar equations [25] 

lny, = “% 

C 

.4,x, 2 

I + B,( 1 - XJ > 

(56) 

In ys = 4 

( 

1+Ul-XA) 2‘ 

) 

(57) 

,$?A 

When the miscibility limits, XL, and xi,,,, are known, 
the constants A, and BP in the above equations can 
be obtained by satisfying the equilibrium conditions 
given by equation (5). The relations for the activity 
coefficients do not thus introduce any more inde- 
pendent dimensionless parameters. 

In this study, we shall consider only evaporation in 
vapor free atmospheres, and thus, the bulk gas satu- 
ration ratio parameters assume sA = 0 and sg = 0, 
values. We shall examine critically the effects of rela- 
tive volatility j, initial dimensionless core radius A,(, 
dimensionless saturation concentration of A E, and 
relative density h, and present a parametric study by 
varying each of these parameters one at a time while 
keeping the rest of the parameters at their default 
values. Table 1 lists the default values of the par- 
ameters used in this study. 

Although the model makes no distinction between 
components A and B, we have taken the core phase 
to be enriched with component B while the shell phase 
with component A. The problem, however, can also 
be solved by reversing the components of the core and 
the shell phases. 

6. RESULTS AND DISCUSSION 

For the present problem, the core and shell radii 
continuously change with time and the system is in a 
transient state at all times. The gas and droplet phase 
concentration distributions also change with time as 
long as the evaporation process continues. The initial 
and boundary conditions for the core phase are, how- 
ever, such that the core phase composition dis- 
t~bution remains at the initial value of xi = .a&,, 
for 0 < r < u,, at all times. The gas and shell phase 
composition distributions as functions of time depend 
on the physical properties and the dimensions of the 

Table 1. Default values of dimensionless 
parameters used in this study 

Default value 

0.80 
0.50 
10s 
5.0 x IO4 
1.0 
0 
0 
0.98 
0.10 

4 2.6238 

> 
4.0709 
i 

8 10. ’ 
J‘ 0.50 
IT 100 

-- _.___““_~~ 
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FIG. 2. Shell phase composition distribution at various times 
for B = 1.0. 

droplet. For the parameter values listed in Table 1, 
Figs. 24 show concentration profiles in the shell and 

gas phases at various times, and the outer and core 
radii as functions of time, respectively. 

Figure 2 shows that the composition at the core- 
shell interface (i.e. Y= I) always remains at 

.*_k = ,~a,,,. as specified by the equilibrium boundary 
condition. At all times, the mole fraction of .~a, as a 

function of position decreases from the value xi,, at 
the droplet-gas interface to the equilibrium value xi,,,. 
at the core-shell interface. The composition at the 

droplet-gas interface continuously increases above 

the initial value xi,,,, as time progresses. The shell 
phase composition distribution as a function of time 
depends on the relative evaporation rates of com- 
ponents A and B. For the surface composition xi,, to 
increase initially, the ratio of the initial evaporation 
rate of B to that of A must exceed the initial com- 

0 0000 0 0005 0 0010 0 0015 
Dlmenslonless Posltlon. Z 

FIG. 3. Gas phaseconcentration distribution at various times 
for fl = 1.0. 

position ratio of B to A in the shell phase. This con- 
dition can be expressed mathematically as follows : 

where the left-hand side term of the second inequality 
represents the ratio of the initial evaporation rates. 
For the values listed in Table I, the condition in equa- 

tion (58) is satisfied. The initial increase in the surface 
composition of A can thus be explained. When the 
ratio of the evaporation rate of B to that of A exceeds 
the composition ratio of B to A in the shell phase, the 

core phase shrinks by supplying to the shell phase the 
excess amount of B lost by evaporation. Figure 4 
shows that the core radius indeed decreases as a func- 
tion of time. 

The gas and shell phase concentration distributions 
as functions of time have two distinct periods : a short 
transient period followed by a long dynamic steady 

period. During the initial transient period, the con- 
centration distributions develop in the gas and shell 
phases, and change rapidly to dynamic steady state 
values. During the dynamic steady state period, the 
gas and liquid phase transfer rates, and the outer and 
core radii change relatively slowly. The change of 

interfacial composition during this period depends on 
the gas and shell phase interfacial transfer rates. and 
the rate of change of the outer radius, as indicated by 
the boundary conditions given by equation (8). For 
the case in Fig. 2, xi, continuously increases as time 

progresses. To examine the gas phase transfer, in Fig. 
3, we have plotted the dimensionless gas phase con- 
centration as a function of position for various values 
of 7. The gas phase concentration decreases from the 
surface value at Z = 0 to the bulk value I/I& = 0 at 
Z = 1. The droplet surface concentration follows the 
equilibrium relation given by equation (7). and 
decreases as the surface composition of B xks, in the 
shell phase decreases as time progresses. The inter- 
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FIG. 5. Shell phase composition distribution at various times 
for fi = 0.10. 

facial gas phase diffusional transfer rate thus follows 
the interfacial composition trend, and for the present 
case it decreases for component B. The balance of 
equation (8) is thus dictated by the shell phase transfer 
rate. The transfer rate of a component from the core- 
shell interface to the droplet-gas interface depends on 
the shell thickness (A -A,). Figure 4 shows that the 
outer and core radii decrease with time but the core 
radius decreases faster than the outer radius. The shell 
thickness (A -A,) thus increases as time progresses. 
Finally the core disappears completely at z = 24, leav- 
ing a single-phase droplet of final size A = 0.585. The 
increasing shell thickness reduces the transfer rate of 
component B from the core-shell interface to the 
droplet-gas interface, and to maintain the balance of 
equation (8), the surface composition .a$, (or xaS) 
decreases (or increases) with time as shown in Fig. 2. 

The concentration distributions and the dimensions 
of a layered droplet as functions of time depends on 
the physical properties of the system. Figures 5 and 6 

-i 
0 5 10 15 20 25 30 35 

Dunenslonles Tune, T 

show the shell phase composition distribution and the 
outer and core radii as functions of time, respectively, 
for fl = 0.10. The value of fl can be decreased by 
lowering the vapor pressure of component B pOs, when 
the other physical properties are kept at the same 
values. The condition in equation (58) is satisfied for 
/I = 0.10. Figure 5 shows that the droplet surface com- 
position xi,, rapidly increases to a maximum value 
during the initial transient period, and then slowly 
decreases with time. For this case, Fig. 6 shows that 
both the outer and the core radii decrease with time 
but the outer radius decreases faster than the core 
radius. The shell thickness thus decreases as time pro- 
gresses. Finally the shell evaporates completely at 
z = 34, leaving a single phase droplet of final size 
A = A, = 0.777. The decrease of the surface com- 
position during the dynamic steady period is due to 
the decreasing she11 thickness. 

The physical process reverses when the value of b 
decreases to 0.01. Figures 7 and 8 show the shell phase 
composition distribution and the outer and core radii 
as functions of time, respectively, for /I = 0.01. For 
this case, the ratio of the initial evaporation rate of A 
to that of B exceeds the initial composition ratio of 
A to B in the shell phase. Figure 7 shows the surface 
composition decreases rapidly to a minimum value 
from the initial value xi,, during the transient period, 
and then the surface composition increases slowly. At 
all times, the composition of B everywhere in the shell 
phase exceeds the miscibility limit x&, (i.e. xk < x2,,,), 
and it decreases from the surface value to the mis- 
cibility limit value x’,,, at the core-she11 interface. In 
addition to the shrinkage due to the evaporation, the 
shell phase thus also shrinks by supplying a pro- 
portionate amount of A and B to the core phase, and 
the core phase grows. Figure 8 shows that the outer 
radius decreases while core radius increases. At 
r = 34, the shell collapses on the core, and during 
this period the core grows from the initial value of 
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FIG. 7. Shell phase composition distribution at various times 
FIG. 6. Core and outer radii as functions of time for B = 0.10. for b = 0.01. 
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FIG. 8. Core and outer radii as functions oftime for fi = 0.01. 

Aci = 0.80 to a final value A = A, = 0.813. Since the 
shell thickness continually decreases, the surface com- 
position _xAsr increases after attaining a minimum 
value at the end of the transient period. At t = 33. 
when the shell is very thin, Fig. 7 shows the com- 
position distribution becomes almost uniform with a 
value of xi = XL,. 

The preceding examples show that depending on 
the value of & the core either evaporates or grows 
during the evaporation of a layered droplet, eventu- 
ally forming a single-phase droplet enriched with 
either component A or component B. When the core 
evaporates, the core eventually disappears for /I = 1 .O, 
and the shell collapses on the core for /r = 0.10. For 
a given droplet dimension the relative volatilities of 
components A and B dictate the final composition of 
the single-phase droplet. Similarly. for a given set 
of physical properties, the composition of the final 
single-phase droplet is dictated by the initial dimen- 
sions. Table 2 shows the effect of the initial value of the 
dimensionless core radius. As the initial core radius 
increases, the time required for the formation of a 
single-phase droplet increases when the core disap- 
pears. For A,, < 0.8, the core disappears completely, 
and for A,: = 0.9, the shell evaporates completely. 
The results indicate that there is a critical initiat core 
radius, between 0.80 and 0.90, for which both the core 
and shell disappear simultaneously. This critical value 
depends on the physical properties of the system. 

Table 2. Effect of initial shell thickness 
~-~_ 

Initial core Final time Final core Final outer 
radius, A,, 5 radius, A, radius, A4 

~~__~ . _._..___ 

0.50 6.33 0.000 0.916 
0.60 10.0 0.000 0.860 
0.70 15.5 0.000 0.766 
0.80 24.0 0.000 0.585 
0.90 20.0 0.655 0.655 

Table 3. Effect of volatility parameter J. 

Volatility 
parameter Final time Final core Final oulc~ 

i: T radius, if, radius, .-1 

IxlO“ 2.23 x 101 0.000 0.587 
I x IO -$ 2.31 x 10’ 0.000 0.586 
I x 1o--7 2.35 x 10’ 0.000 0.582 
I x lo-” 3.49 x 10” 0.000 0.445 
lx10 i 3.80 x 10.. ’ 0.552 0.552 

-_____. ._ -. 

The effect of the volatility parameter E, is shown in 
Table 3. When all the other parameters remain at the 
same values, a change in the volatility parameter by a 
factor represents changes of the vapor pressures of A 
and B by the same factor. As the volatility parameter 
increases, Table 3 shows that the duration of per- 
sistence of a layered droplet as a two phase droplet 
shortens. For E < lo-‘, the core disappears 
completely, and for e = 10 -‘;. the shell evaporates 
completely. For low values of i: (i.e. < lo- ‘). the size 
of the final single phase droplet is independent of 
E, and the time required for its formation is almost 
inversely proportional to the value of E. 

The densities of the components can also sig- 
nificantly affect the evaporation process of a layered 
droplet. Table 4 shows the effect of the relative density 
parameter b. A change of b alone represents a change 
of the density of component A, GA,. For h i 0.9, the 
core disappears and for h 2 0.90, the shell disappears. 
When the core disappears, an increase of h or a 
reduction of the density of component A, decreases 
the final single-phase droplet size and increases the 
time required for its formation. When the shell dis- 
appears, an increase of h increases the final single- 
phase droplet size and reduces the time required for 
its formation. The densities affect the evaporation 
rates two ways: by altering the volume change for a 
given mass change due to the evaporation, and by 
altering the magnitude and direction of the convective 
velocity generated by the density difference. Since the 
composition of A decreases from the droplet surface 
to the core-shell interface for an evaporating core, 
equation (27) shows that the convective velocity is 
directed towards the core for h < 1, and towards the 
droplet surface for h > 1. The core evaporation rate 
is then retarded for h < I, and is enhanced for h > I, 

Table 4. Effect of relative density parameter h 

Relative 
density Final time Final core Final outer 

parameter, b 5 radius, A, radius, A 

0.50 24.0 0.000 0.585 
0.70 25.7 0.000 0.417 
0.80 26.9 0.000 0.300 
0.90 25.0 0.313 0.313 
1.10 20.0 0.470 0.470 
1.30 15.5 0.550 0.550 
I.50 14.0 0.587 0.587 

-_-_ ~~~ ~~~_...___ __.___._ 
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FIG. 9. Overall and core evaporation rates, and shell thick- 
ness as functions of time. 

by the convective transport. An increase of b or a 
reduction of the density of component A, increases 
the evaporation of the shell, and consequently, the 
reduction of the shell thickness increases the evap- 
oration rate of the core. The combination of these two 
effects then dictates the final fate of a layered droplet. 

Another interesting aspect associated with the evap- 
oration of a layered droplet is the evaporation rates 
of the core and shell phases. In a recent experimental 
study, Ray er al. [19] observed that the evaporation 
rate of a core glycerol droplet coated with non-volatile 
dioctyl phthalate increases as the layer thick- 
ness increases. To examine this phenomena, we have 
plotted instantaneous evaporation rates of core and 
shell phases, -A, dA,ldz and -A dA/dz, and the shell 
thickness as functions of time in Fig. 9 for fi = I. For 
this situation the shell thickness, defined by 

00 0.2 
Shell Th(i~4kness,~&A,)/OA 

1.0 

FIG. 10. Core evaporation rate as a function of shell thickness 
for various values of 8. 

(A -A,)/A, increases continuously, and the core 
eventually disappears. The results show that the over- 
all evaporation rate (-A dA/dz) remains nearly the 
same for all values of time, except during the initial 
transient period and when the core disappears. Thus, 
the overall evaporation behavior can approximately 
be described by a linear relation between A* and 7. 

The core evaporation rate (-A, d&/d?), however, 
continuously increases with time, and follows the 
trend of the shell thickness, that is, the core evap- 
oration rate increases as the shell thickness increases 
with time, This behavior is similar to the observation 
of Ray et al. [19]. 

To examine the relation between the shell thickness 
and core evaporation rate, we have plotted the 
instantaneous core evaporation rate after the initial 
transient period as a function of the shell thickness 
for various values of p. The results show that for 
jj’ < 10, the core evaporation rate increases and for 
p > 10, core evaporation rate decreases as the shell 
thickness increases. This behavior can be understood 
qualitatively by considering two competing effects. 
For a given core radius, as the shell thickness increases 
the outer surface area available for evaporation of 
molecules enriching the core phase increases. As the 
shell thickness increases, the diffusional resistance, 
however, lowers the composition of B (i.e. the com- 
ponent epriching the core) at the outer surface as can 
be seen from Figs. 2 and 4. The former effect enhances 
while the latter effect retards the core evaporation rate. 
Whether the combined effect of these two opposing 
tendencies increases or decreases the core evaporation 
rate depends on the physical properties of the system. 

7. CONCLUSIONS 

We have developed a mathematical model for the 
evaporation and growth of a layered droplet of two 
partially miscible components exposed to a stagnant 
gas phase. The model equations describe the unsteady 
state transport of two components in the gas, shell 
and core phases, and the outer and core radii as func- 
tions of time. The model shows that the evaporation 
and growth processes depend on twelve dimensionless 
parameters. We have solved the model equations, 
using a numerical technique, and presented results 
showing the effects of various parameters on the evap- 
oration and growth dynamics of a layered droplet. In 
a vapor-free atmosphere where both components of 
the droplet evaporate, the results show that the core 
may evaporate or grow depending on the physical 
pro~rties of the system. At the gas-droplet interface, 
the composition of the component enriching the core 
phase always remains above the miscibility limit for a 
growing core and below the miscibility limit for an 
evaporating core ; however, depending on the shell 
thickness, the interfacial composition may increase, 
decrease or show a maximum or a minimum as a 
function of time. The analysis suggests that the pro- 
cess of evaporation and growth has two distinct 
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periods : an initial short transient period followed by 
a long dynamic steady period. During the transient 
period, the concentrations in the shell and gas phases 9 
rapidly develop to dynamic steady levels. For an cvap- IO 
orating core, during the dynamic steady period; the 
composition of the core enriching component at the 
outer surface decreases as the shell thickness increases. 11 

For a given core droplet, however, as the shell thick- 
ness increases, the outer surface area available for 
the evaporation of the component increases. As a 12 
consequence, the core evaporation rate may increase 
or decrease with increasing shell thickness, depending 
on the relative magnitudes of these two opposing 13. 
effects on the evaporation of the component enriching 
the core. When the core evaporates, depending on the 
initial dimensions of the droplet, either the core or 14. 

the shell eventualy disappears, leaving a single phase 
droplet enriched with one of the components. At a 15. 
critical initial core radius, whose value depends on the 
physical properties, the core and shell phases dis- 
appear simultaneously. 16. 
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DYNAMIQUE DE CROISSANCE DE L’EVAPORATION D’UNE GOUTTELETTE 
STRATIFIEE 

Rbum&Un modtle mathtmatique est formule pour l’evaporation croissante dune gouttelette unique, 
diphasique, a deux composants partiellament miscibles, exposee a une phase gazeuse au repos. On traite 
rigoureusement les equations de transport instationnaire des deux composants dans les phases du coeur, 
de la peau et du gaz. Le modele mathematique impliquant deux limites mobiles a l’interface coeur-peau et 
a l’interface gouttelette-gaz a CtC rtsolu numeriquement pour differentes conditions. On examine les effets 
des parametres critiques sur la dynamique des gouttelettes. Quand les deux composants s’tvaporent dans 
l’atmosphere, le coeur croit ou s’ivapore selon les paramttres physiques. Quand le coeur s’evapore, soit la 
peau soit le coeur disparait en premier, laissant une goutte a une seule phase. L’ttude montre que 
la volatilite des composants, les paramttres thermodynamiques et de transport influencent fortement 

l’evaporation d’une gouttelette stratifiee. 

VERDAMPFUNGS- UND WACHSTUMSVERHALTEN EINES GESCHICHTETEN 
TROPFENS 

Zusammenfassung-Fiir Verdampfung und Wachstum eines zweiphasigen isolierten Tropfens, der aus zwei 
teilweise mischbaren Komponenten besteht, wird ein mathematisches Model1 aufgestellt. Der Tropfen 
befindet sich in einer ruhenden Gasphase. Fur die beiden Komponenten im Kern, in der Hiille und in der 
Gasphase werden die instationlren Transportgleichungen exakt formuliert. Das sich ergebende mathe- 
matische Model1 schliel3t die beiden beweglichen Phasengrenzen zwischen Kern und Hiille einerseits sowie 
Tropfen und Gas andererseits ein. Die numerische Liisung erfolgt fur verschiedene Bedingungen. Die 
kritischen EinfluBparameter fiir das Verhalten des Tropfens werden untersucht. In einer dampffreien 
Umgebung verdampfen beide Komponenten, wobei der Kern abhlngig von den physikalischen Parametem 
entweder anwachst oder verdampft. Im Fall der Verdampfung das Kerns verschwindet als erstes die Hiille 
oder der Kern, so daB ein einphasiger Tropfen zurilckbleibt. Die Untersuchung zeigt, dal3 die Fliissigkeit 
der Komponenten sowie die thermodynamischen und die Transportparamter das Verdampfungsverhalten 

eines geschichteten Tropfens sehr stark beeinflussen. 

HCI-IAPEHHE I4 JHIHAMHKA POCTA CJIOHCTOfi KAITJIM 

AmoTa~PC~oph4ynkipoeana htareh5armiecKaa hfonenb ncnapenwri n pocra neyx@a3sofi nsonnposa- 
HOii rcannn, cocromuefi 83 neyx ~acrmnio cMemnaamumxc~ KOMnOHeHTOB, lTRH BO3AekTBHH Irenon- 
BHKmOji ra3OBOfi +a3bI. AeTaJlbHO paCCMaTpHBatoTCX HecTaHHOHaRHMe WaBHeHHB lTeIleHOCZ3 AJlK 060HX 
KOMnOHeHTOB B KApe, o6onoHKe H ra3OBOii &3e. gHCJIeHH0 pemaeTCK Ih?3yJIbTHpytomaB MaTeMaTH’ieC- 
KaR MOAeAb, BKJtH)=ialOmaB ABe ABHKCylInieCR vaHHI&l Ha IIOBepXHoCTBX pa3AeAa BApo-o6OAOHKa H 
Ka,,AB-ra3 B pa3AH’IHMX yCAOBHBX. kCAeAyeTCR BAHBHHe KRHTHHeCKHX napaMeTpOB Ha LlHHaMHK,’ 

Kanenb. fIpH HcnapeHHH 06oex Kobmoueuroa 3 arMoc@epe, He conepXameii napa, pe3ynbrarbt noKa3br- 
BamT, ST0 BAR0 paCTeT HJIW HCllapKeTCS B 3aBHCHMOCTH OT &i3HWCKHX lTapahleTIJOB. I-IpH HCnapeHHH 
nnpa HcHe3aeT o6onouKa Hna BAPO, nocne Hero 0craeTcn oAHo&uHan Karen. IIoKasaHo, ST0 neryrecTb 
KOMnOHIHTOB, a TaKHCe TepMOAHHaMHKeCKHe XapaKTepHCTHKH H naRaMeTpM nel,eHOCa OKa3MBaK)T 

ckinbHoeBnHnHHeHanpoueccucnapeHuncnoncToiiKannH. 


